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A family of multivariate representations is introduced to capture the input–output rela-
tionships of high-dimensional physical systems with many input variables. A systematic
mapping procedure between the inputs and outputs is prescribed to reveal the hierarchy of
correlations amongst the input variables. It is argued that for most well-defined physical
systems, only relatively low-order correlations of the input variables are expected to have
an impact upon the output. The high-dimensional model representations (HDMR) utilize
this property to present an exact hierarchical representation of the physical system. At each
new level of HDMR, higher-order correlated effects of the input variables are introduced.
Tests on several systems indicate that the few lowest-order terms are often sufficient to
represent the model in equivalent form to good accuracy. The input variables may be either
finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space Rn) or
may be infinite-dimensional as in the function space Cn[0, 1]. Each hierarchical level of
HDMR is obtained by applying a suitable projection operator to the output function and each
of these levels are orthogonal to each other with respect to an appropriately defined inner
product. A family of HDMRs may be generated with each having distinct character by the
use of different choices of projection operators. Two types of HDMRs are illustrated in the
paper: ANOVA-HDMR is the same as the analysis of variance (ANOVA) decomposition
used in statistics. Another cut-HDMR will be shown to be computationally more efficient
than the ANOVA decomposition. Application of the HDMR tools can dramatically reduce
the computational effort needed in representing the input–output relationships of a physical
system. In addition, the hierarchy of identified correlation functions can provide valuable
insight into the model structure. The notion of a model in the paper also encompasses
input–output relationships developed with laboratory experiments, and the HDMR concepts
are equally applicable in this domain. HDMRs can be classified as non-regressive, non-
parametric learning networks. Selected applications of the HDMR concept are presented
along with a discussion of its general utility.

1. Introduction

The physical models of various phenomena and their resultant mathematical struc-
ture often contain many input variables. Such models act to represent real world or
laboratory processes, and this paper will generally use the word “model” to also en-
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compass working directly with the laboratory variables and observations. In some
cases the system variables serve as controls to be set in the laboratory and in other
circumstances they are internal model variables whose values may be uncertain. In
either case, a general desire is to deduce the detailed structure of the n-dimensional
variable space in order to identify regions of special impact on the model or observed
output. Without any a priori physical assumption on the nature of the model input–
output relationships, construction of a full space analysis would be NP-complete with
computational complexity scaling exponentially as ∼sn, where s is the number of
sample values for each input variable. This problem is sometimes referred to as the
curse of dimensionality, i.e., without any regularization or other form of simplification,
learning the multivariate input–output function from its sample values is computation-
ally or observationally NP-complete in the dimension of its input variables. Stone [32]
showed that, using local polynomial regression, one can achieve a rate of convergence
εN = N−p/(2p+n) with N being the number of sample points and p being the degree
of the smoothness of the function, e.g., p = 2 implies that the function is twice dif-
ferentiable. It is easy to see how the curse of dimensionality appears. Without a high
degree of smoothness (p � n), εN = N−p/n, and one needs ∼sn/p sample points to
approximate the function to a resolution of 1/s. So, without any a priori knowledge
of the output, the approximation/interpolation problem appears to be NP-complete.
The high-dimensional model representations (HDMR) introduced in this paper aim to
show that a dramatic reduction in this scaling is often expected to arise in well-defined
physical systems due to the presence of only low-order correlations amongst the input
variables having a significant impact upon the output.

The model output will be a function if the input variables are chosen from a
Euclidean space Rn and a functional if the input variables come from an infinite-
dimensional function space like C[0, 1] (i.e., the space of continuous functions on
the unit interval). The HDMR expansions introduced here are especially useful for
the purpose of representing the outputs of a physical system when the number of
input variables is large. The HDMR expansions are based on exploiting the correlated
effects of the input variables, which are naturally created by the input–output mapping.
The term “correlation” employed here is generally distinct from that employed in
statistics, as the input variables often will not be random. We assume that the model
output(s) is rationally behaved in terms of the input variables (i.e., the output is a
well-defined function(al), but rapid or even discontinuous behavior would still be
permitted). The high dimensionality of the input space and the expense of performing
model calculations or experiments often prevent a full sampling of the input space
(i.e., ∼sn computer simulations or experiments). The notion of “high” dimensionality
is system-dependent, with some situations being considered high for practical reasons
at n ∼ 3–5, while others will only reach that level of complexity for n� 10 or more.

With the comments above as background we seek a fast algorithm which can
circumvent the apparent exponential difficulty of the high-dimensional mapping prob-
lem. In the case of function mapping the HDMR expansions can be written in the
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following form, for f (x) ≡ f (x1,x2, . . . ,xn) representing the mapping between the
input variables x1,x2, . . . ,xn defined on the domain Ω ⊂ Rn and the output f :

f (x) ≡ f0 +
∑
i

fi(xi) +
∑
i<j

fij(xi,xj) + · · ·+ f12...n(x1,x2, . . . ,xn). (1)

An analogous expansion applies to functional mapping. Here f0 denotes the zeroth-
order effect which is a constant everywhere in the domain Ω. The function fi(xi) gives
the effect associated with the variable xi acting independently, although generally
nonlinearly, upon the output f . The function fij(xi,xj) describes the cooperative
effects of the variables xi and xj , and higher-order terms reflect the cooperative effects
of increasing numbers of variables acting together to impact upon f . The last term
f12...n(x1, . . . ,xn) gives any residual dependence of all the variables locked together
in a cooperative way to influence the output f . If there is no cooperation between
the input variables, then only zeroth-order and first-order terms will appear in the
expansion. However, even to first order the expansion is not a linear superposition,
as fi(xi) could have an arbitrary dependence on xi. The notion of 0th, 1st, 2nd
order, etc. in the HDMR expansion should not be confused with the terminology of a
Taylor series; the HDMR expansion is exact and always of finite order. The HDMR
expansion is a very efficient formulation of the physical output if higher-order variable
correlations are weak, permitting the physical model to be captured by the first few
lower-order terms. The resultant computational or experimental effort to determine the
expansion functions will scale polynomically with n rather than the traditional view
of it being exponential with n. The choice of input variables can be important, but
evidence suggests that often no special effort is required to find rapid convergence
of the HDMR expansion for most well-defined physical systems. Typically, physical
input variables are chosen, often with much insight or experience, to have distinct roles,
which aids in the convergence of the HDMR. In some cases suitable transformations
of the variables may be helpful to simplify the analysis.

The HDMR has a structure analogous to the many-body expansions used in
molecular physics [23] to represent potential surfaces created by a system of atoms.
Generally, two-body terms dominate and rarely are terms beyond third-order signifi-
cant. The many-body expansions can be viewed as a special case of an HDMR which
rapidly converges for particular physical reasons. Similar rapidly convergent cluster
expansions are utilized in statistical mechanics [10]. Expansions of the form of equa-
tion (1) have been introduced before for various additional purposes [5,9,24,30], but
they have not been extensively exploited. The HDMR concept rests on suggesting
that a similar rapid loss of correlation exists under more general physical conditions.
Perhaps the best evidence for this conjecture lies in statistics where rarely do more
than input covariances play a significant role. The latter behavior can depend on the
dynamic range of the input variables, but the observed lack of higher-order correlations
appears to be generic. Conversely, an HDMR may not be of practical utility (i.e., high-
order terms play a role) for arbitrary mathematical functions, although equation (1) is
always an exact representation.
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In order to understand the effects of each of the terms in the HDMR expansion,
projection operators Pi1i2...il may be introduced so that Pi1i2...ilf = fi1i2...il determines a
particular term in the HDMR expansion. The orthogonality of the projection operators
ensures that the terms within and between each order give unique correlated information
about the variables contributing to the output function f (x). The sum of the full set
of projection operators {Pi1i2...il} provides a resolution of the identity operator and
different sets of projection operators give rise to distinct HDMR expansions. The
choice of a particular HDMR expansion depends on the application and the nature of
any constraints for sampling the input variables x1, . . . ,xn. The input space is assumed
to be a normed vector space furnished with an inner product expressed in terms of a
suitable measure.

Attempts at approximating multivariate functions by linear or nonlinear super-
positions of functions have a long history, and some relevant cases are mentioned
here as further background. Projection pursuit algorithms [3,7,13,33] approximate the
multivariate function f (x) in the form

f (x) ≡ f (x1,x2, . . . ,xn) = µ+
K∑
i=1

fi

(
n∑
k=1

βikxk

)
, (2)

where ~βi ≡ [βi1, . . . ,βin] represent the projection directions and µ is taken to be the
average of the function. The parameter vectors ~βi and functions fi are estimated from
the data. One may view (2) as a special case of (1) using linear combinations of the
original variables and truncating the expansion to the first order. Multilayer perceptrons
(MLPs) [17] used in artificial neural networks approximate the multivariate function
f (x) in the following form:

f (x) = h

(
K∑
i=1

αig

(
n∑
k=1

βikxk

))
, (3)

where h and g are arbitrary nonlinear functions (i.e., this is an MLP with a single
hidden layer). Such a learning network is trained with a given set of input and output
values and an MLP approximation seeks to find the scalars αk and the vectors ~βi by
least squares minimization. Radial basis functions [18] have been used to approximate
f (x) as a nonlinear function of its input variables under a regularization criteria. This
approach under certain conditions [18] leads to the expansion

f (x) =
K∑
i=1

βifi
(
‖x− ui‖

)
+ P(x), (4)

where the ui are centers similar to the knots of splines, the βi are constants, the fk
are a chosen set of radial basis functions (e.g., a Gaussian) and P is a polynomial.
The coefficients are then fitted to data using least-squares minimization. Although the
representations above are useful for particular applications, there is no general rule
of thumb to choose one over another. There are not widely accepted procedures for
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determining the number of hidden layers, number of functions, etc. The parameters
of the networks are obtained by least-squares minimization and typically the objective
functional is not globally convex and has many local minima, which may result in a
nonunique representation.

The above representations are often quoted as inspired by a theorem of Kol-
mogorov [15] which states that a multivariate function defined on the unit cube
Kn = [0, 1]n can be represented in the following way:

f (x1,x2, . . . ,xn) =
2n+1∑
q=1

g
(
λ1φq(x1) + · · ·+ λnφq(xn)

)
, (5)

i.e., any multivariate function can be written as a linear superposition of univariate
functions. Although the functions φq are continuous, they are highly nonsmooth and
their practical utility for approximation/interpolation appears very limited [8]. The
HDMR technique aims to represent multivariate functions arising in physical contexts
rather than for arbitrary function interpolation. As argued earlier, in most well-defined
physical systems it is natural to expect very low-order correlations amongst the input
variables for their action upon the output function f (x). There is a predisposition
towards this behavior in describing physical systems as one naturally chooses the
variables to act as independently as possible. In light of the theorem of Kolmogorov,
it appears that although the natural variables in typical physical systems are not perfect
in the sense of equation (5), the additional low-order correlations are easily managed.

There is no unique decomposition of the model output f (x1,x2, . . . ,xn) in the
form of equation (1). This richness of the HDMR expansions may be exploited for
a specific representation objective. For example, in the case of uncertainty analysis
of the model output (e.g., an analysis of the variance of the output), one should
choose the component functions in the HMDR so that they represent the independent
contributions of input variables to the overall uncertainty of the output. Such an
ANOVA-HDMR used in statistics can measure the importance of the input variable
variance upon the variance of the output. In this case each component function is
a random quantity uniquely contributing to the overall variance of the output. The
hierarchical formulation of ANOVA-HDMR allows for the identification of how each
input variable or group of input variables determines the variance of the output. In
this way, ANOVA-HDMR also supplies a nonlinear sensitivity analysis of the model
output. A drawback of the traditional ANOVA-HDMR is the need for Monte Carlo
simulations to compute the component functions [12,22]. Cut-HDMR is a different
HDMR expansion using a specific sampling of the model output to generally provide a
computationally more efficient representation than ANOVA-HDMR. If an uncertainty
analysis of the model output is of interest, then a cut-HDMR can be easily converted
into ANOVA-HDMR of the output. This approach is generally computationally more
efficient than the direct route of computing the ANOVA-HDMR of the model output,
and this point is discussed in the paper.
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The paper is organized as follows. Section 2 gives the general formulation of the
HDMR function expansion in terms of projection operators where the input variables
reside in Rn. Sections 2.1 and 2.2 presents two particular HDMR function expansions.
Section 3 considers the HDMR expansion for functionals where the input values come
from the n-fold product space Xn, where X is an arbitrary linear topological function
space. The appendix gives a primer on functional integrals essential to the understand-
ing of the material presented in section 3. The numerical examples in the paper are
chosen to illustrate the capabilities of the HDMR concept. No detailed exposition is
given in the physical background of the examples, as a full elaboration appears else-
where as cited. In this regard, the present paper aims to present the general foundations
of HDMR which are not set forth in the works illustrating the concepts. Section 4
presents a general discussion about further potential applications of the HDMR tools.
Concluding remarks and future perspectives are given in section 5.

2. Function HDMR

We assume that the input–output relationship of a physical model is represented
by a real, scalar function f (x) ≡ f (x1,x2, . . . ,xn) defined on the unit cube Kn =
{(x1,x2, . . . ,xn): 0 6 xi 6 1, i = 1, 2, . . . ,n}. The extension to an output vector is
readily apparent as each vector (function) component can be treated separately. f (x)
belongs to a linear vector space of functions denoted by X. A measure µ on Borel
subsets of Kn is defined so that {Kn,B(Kn),µ)} becomes a measure space (with
B(Kn) denoting the Borel σ-algebra on Kn). We consider the subspace of X to
consist of all integrable functions with respect to µ. We further stipulate that µ is a
product measure with unit mass and has a density, i.e.,

dµ(x)≡ dµ(x1, . . . ,xn) =
n∏
i=1

dµi(xi),
∫
K1

dµi(xi) = 1,

dµ(x) = g(x) dx =
n∏
i=1

gi(xi) dxi, (6)

where gi(xi) is the marginal density of the input xi.
The inner product 〈·, ·〉 on X induced by the measure µ is defined as follows:

〈f ,h〉 ≡
∫
Kn

f (x)h(x) dµ(x), f (x),h(x) ∈ X. (7)

Two functions f (x) and h(x) will be called orthogonal if 〈f ,h〉 = 0. Note that
functions f (x) and h(x) may depend on different sets of components of the input
vector x. The norm ‖ · ‖X on X induced by the above inner product is defined as
follows: ∥∥f (x)

∥∥
X
≡
(
〈f , f〉

)1/2 ≡
(∫

Kn

f 2(x) dµ(x)

)1/2

. (8)
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We now define the following decomposition of X into subspaces whose mutual inter-
sections are empty:

Definition. V0, {Vi}, {Vij}i<j , . . . ,V12...n ⊂ X are defined as follows:

V0≡ {f ∈ X: f = C, where C ∈ R is a constant},

Vi≡
{
f ∈ X: f = fi(xi) is a univariate function of the input xi

with
∫
K1
fi(xi) dµi(xi) = 0

}
,

Vij ≡
{
f ∈ X: f = fij(xi,xj) is a bivariate function of the inputs xi,xj

with
∫
K1
fij(xi,xj) dµk(xk) = 0, k = i, j

}
,

Vi1...il ≡
{
f ∈ X: f = fi1...il(xi1 ,xi2 , . . . ,xil) is an l-variate function of the

inputs xi1 , . . . ,xil

with
∫
K1
fi1...il(xi1 , . . . ,xil) dµk(xk) = 0, k = i1, . . . , il

}
,

...

V12...n≡
{
f ∈ X: f = f12...n(x1,x2, . . . ,xn) is an n-variate function of all inputs

with
∫
K1
f12...n(x1,x2, . . . ,xn) dµk(xk) = 0, k = i1, . . . , il

}
. (9)

The integral null property introduced above in any subspace Vi1i2...il serves to
assure that the functions are orthogonal:

〈fi1...is , fj1...jp〉 = 0 (10)

for at least one index differing in {i1, . . . , is} and {j1, . . . , jp}, and s may be the same
as p.

Lemma 1. The following proposition can be deduced immediately from the definition
above: X is the direct sum of the subspaces defined above, i.e.,

X = V0 ⊕
∑
i

Vi ⊕
∑
i<j

Vij ⊕ · · · ⊕
∑

i1<i2<···<il

Vi1i2...il ⊕ · · · ⊕ V12...n, (11)
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where ⊕ denotes the direct sum operator. The corollary to this proposition is that
f (x) ∈ X can be written as

f (x) = f0 +
∑
i

fi(xi) +
∑
i<j

fij(xi,xj) + · · ·+ f12...n(x1,x2, . . . ,xn). (12)

Decomposition (11) of X is unique subject to the choice of measure in (6), which in
turn implies that expansion (12) is unique.

Proof. We will determine the individual terms in expression (12) constructively and
show uniqueness. Uniqueness of decomposition (11) then follows from this result. We
first fix some notation. The conditional mean Mi1i2...ilf (x) of the output function with
respect to the group of input variables {xi1 ,xi2 , . . . ,xil} is denoted as follows:

Mi1i2...ilf (x) =

∫
Kn−l

f (x)

[ ∏
j /∈{i1,...,il}

dµj(xj)

]
. (13)

The unconditional mean of the function f (x) is given by

Mf (x) =

∫
Kn

f (x) dµ(x). (14)

Now we define the functions f0, {fi(xi)}i, etc. recursively as follows:

f0≡Mf (x),

fi(xi)≡Mif (x)− f0,

fij(xi,xj)≡Mijf (x)− fi(xi)− fj(xj)− f0,
...

fi1...il(xi1 , . . . ,xil)≡Mi1...ilf (x)−
∑

j1<···<jl−1⊂{i1,...,il}

fj1...jl−1(xj1 , . . . ,xjl−1)

−
∑

j1<···<jl−2⊂{i1,...,il}

fj1...jl−2(xj1 , . . . ,xjl−2)− · · ·

−
∑

j⊂{i1,...,il}

fj(xj)− f0,

...

f12...n(x)≡ f (x)− f0 −
∑
i

fi(xi)−
∑
ij

fij(xi,xj)− · · · . (15)

It is evident that f0 ∈ V0, fi(xi) ∈ Vi and lastly f12...n ∈ V12...n. �

Lemma 2. (11) suggests the following family of projection operators defined from X
into one of the subspaces above:

f0≡P0f (x) = Mf (x),
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fi(xi)≡Pif (x) = Mif (x)− P0f (x),

fij(xi,xj)≡Pijf (x) = Mijf (x)− Pif (x)− Pjf (x)− P0f (x),
...

fi1...il(xi1 , . . . ,xil)≡Pi1...ilf (x) = Mi1...ilf (x)−
∑

j1<···<jl−1⊂{i1,...,il}

Pj1...jl−1f (x)

−
∑

j1<···<jl−2⊂{i1,...,il}

Pj1...jl−2f (x)− · · ·

−
∑

j⊂{i1,...,il}

Pjf (x)− P0f (x). (16)

These operators are chosen so that the variational problem

min
u

∥∥f (x)− u
∥∥
X

, u ∈ V0 ⊕
∑
i

Vi ⊕
∑
i<j

Vij ⊕ · · · ⊕
∑

i1<i2<···<il

Vi1...il , (17)

is minimized with

u =

(
P0 +

∑
i

Pi +
∑
i<j

Pij + · · ·+
∑

i1<i2<···<il

Pi1i2...il

)
f (x). (18)

Proof. Proving assertion (18) can be established by finding the extremal value of the
functional J defined below:

εl(x)≡ f (x)− u = f (x)− f0 −
∑
i

fi(xi)−
∑
i<j

fij(xi,xj)− · · ·

−
∑

i1<···<il

fi1...il(xi1 , . . . ,xil),

J ≡
∥∥f (x)− u

∥∥2
X

=

∫
Kn

[
εl(x)

]2
dµ(x), (19)

with the constraints f0 ∈ V0, fi(xi) ∈ Vi, etc. εl(x) is the error of approximation at
the lth level.

The proof will be by induction. For l = 0,

J =

∫
Kn

[
f (x)− f0

]2
dµ(x); (20)

setting the first variation of J to zero we get first-order necessary conditions for a
minimum:

δJ
δf0

=−2
∫
Kn

[
f (x)− f0

]
dµ(x) = 0 ⇒ f0 =

∫
Kn

f (x) dµ(x). (21)

Lagrange multipliers λi1i2...il are introduced below to incorporate the constraints in (9)
into the the optimization functional J . The augmented functional is J ′.
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For l = 1,

J ′=
∫
Kn

[
f (x′)− f0 −

n∑
i=1

fi
(
x′i
)]2

dµ(x′) +
n∑
i=1

λi

∫
K1
fi
(
x′i
)

dµi
(
x′i
)
, (22)

∂J ′
∂λi

=

∫
K1
fi
(
x′i
)

dµi
(
x′i
)

= 0, i = 1, 2, . . . ,n, (23)

∂J ′
∂f0

=−2
∫
Kn

[
f (x′)− f0 −

∑
j

fj
(
x′j
)]

dµ(x′) = 0, (24)

δJ ′
δfi(xi)

=−2
∫
Kn

[
f (x′)− f0 −

∑
j

fj
(
x′j
)]
δ
(
xi − x′i

)
dµ(x′) + λi = 0. (25)

Here δ(xi − x′i) is a Dirac delta function. Equations (23) and (24) together imply

f0 =

∫
Kn

f (x) dµ(x) = Mf (x). (26)

Equations (23) and (25) give

−2gi(xi)
[
Mif (x) + f0 − fi(xi)

]
+ λi. (27)

Integrating this last equation with respect to the variable xi and using the constraint∫
fi(xi) dµi(xi) = 0 along with (26) gives λi = 0, resulting in the conclusion

fi(xi) = Mif (x)− f0. (28)

Now, assuming that (18) is true for l − 1, we minimize the functional

J ′=
∫
Kn

[
f (x′)− f0 −

n∑
i=1

fi
(
x′i
)
− · · ·

−
∑

j1<···<jl

fj1...jl

(
x′j1

, . . . ,x′jl
)]2

dµ(x′)

+
∑

i1<···<il

∑
k∈{i1,i2,...,il}

λki1...il

∫
K1
fi1...il

(
x′i1 , . . . ,x′il

)
dµk
(
x′k
)
,

∂J ′
∂λki1...il

=

∫
K1
fi1...il

(
x′k
)

dµk
(
x′k
)

= 0, k = i1, i2, . . . , il, (29)

δJ ′
δfi1...il(xi1 , . . . ,xil)

=−2
∫
Kn

[
f (x′)− f0 −

n∑
i=1

fi
(
x′i
)
− · · ·

−
∑

j1<···<jl

fj1...jl

(
x′j1

, . . . ,x′jl
)]
δ
(
xi1 − x′i1

)
− · · ·
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− δ
(
xil − x′il

)
dµ(x′)

+
∑

k∈{i1,...,il}

λki1...il

∏
j∈{i1,...,il}

j 6=k

δ
(
xj − x′j

)
. (30)

Equations (29) and (30) together imply

−2

[∫
Kn

f (x′) dµi1...il(x′)− f0 −
∑

k∈{i1,...,il}

fk(xk)− · · · − fi1...il(xi1 , . . . ,xil)

]
+

∑
k∈{i1,...,il}

λki1...il

∏
j∈{i1,...,il}

j 6=k

δ
(
xj − x′j

)
. (31)

Integrating (31) with respect to the variables xi1 ,xi2 , . . . ,xil and using the identity in
equation (29) we get the following equations for the Lagrange multipliers λki1...il :

1 δ(xi2 − x′i2) . . . δ(xil − x′il)

δ(xi1 − x′i1) 1 δ(xi3 − x′i3)
...

...
. . . . . . . . .

1 δ(xil − x′il)
δ(xi1 − x′i1) . . . δ(xil−1 − x′il−1

) 1



×



λi1i1...il

λi2i1...il
...
...

λili1...il


=



0

0
...
...

0


.

The above equations are satisfied only if the λki1...il are identically zero. Equation (31)
then gives

fi1...il(xi1 , . . . ,xil)

=

∫
Kn−l

f (x′) dµi1i2...il(x′)−
∑

j1<···<jl−1⊂{i1,...,il}

fj1...jl−1(xj1 , . . . ,xjl−1)

−
∑

j1<···<jl−2⊂{i1,...,il}

fj1...jl−2(xj1 , . . . ,xjl−2)− · · · −
∑

j∈{i1,...,il}

fj(xj)− f0. (32)

Importantly, each of these functions fi1,...,il is determined separately in a sequence
starting from the lower members and moving up. �
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Returning again to the collection of projection operators, we observe that they
have the following properties:

1. Idempotency:

P 2
i1i2...il

≡ Pi1i2...il 6= 0, i1 < i2 < · · · < il ⊂ {1, 2, . . . ,n}. (33)

2. Orthogonality:

Pi1i2...ilPj1j2...jk ≡
{

0, l 6= k,
Pi1i2...ilδi1j1δi2j2 · · · δiljl , l = k,

(34)

with the symbol δij being the Kronecker delta function. In (1) and (2), the compo-
sition of projection operators is understood to imply an integration over the input
variable space, and the relation l = k or l 6= k refers to comparing all the indices
i1i2 . . . il and j1j2 . . . jk.

3. Resolution of the identity:

P0 +
∑
i

Pi +
∑
i<j

Pij + · · ·+ P12...n = 1, (35)

where 1 denotes the identity operator.

Corollary 1. Operators defined by

Ql = P0 +
∑
i

Pi +
∑
i<j

Pij + · · ·+
∑

i1<i2<···<il⊂{1,2,...,n}

Pi1i2...il (36)

are also projectors.

Corollary 2. An important property of the HDMR is that, if a set of output-model
functions obey a set of linear-superposition conservation laws (e.g., conservation of
mass), then their HDMR expansion to any order also obeys these conservation law(s)
order-by-order. Given the output functions {f 1(x), f 2(x), . . . , fN (x)}, suppose that
they obey the following m conservation laws:

N∑
j=1

wkjf
j(x) = ck, k = 1, 2, . . . ,m, (37)

where wkj are constants. Then these conservation laws are obeyed by Qlf
j(x) for

0 6 l 6 N , i.e.,

N∑
j=1

wkjQlf
j(x) = ck, k = 1, 2, . . . ,m, l = 0, 1, 2, . . . ,N. (38)
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This result is obtained by using the following identities:

N∑
j=1

wkjPi1...ilf
j(x) =

{
0, Pi1...il 6= P0,
ck, Pi1...il = P0.

(39)

Corollary 3. The properties of the projection operators assure the following: (1) The
projection of f to form fi1i2...il is unique given the operator Pi1i2...il . (2) The functions
fi1i2...il and fj1j2...jk are independent and orthogonal provided that at least one member
of {i1i2 . . . il} and {j1j2 . . . jk} differ from each other. (3) The HDMR expansion has
a finite number of terms that exactly represent f (x). The demand that Pi1i2...il 6= 0
assures that each order of correlation in f (x) is allowed to be naturally identified. The
HDMR expansion functions f0, fi(xi), fij(xij), etc. are understood to be particular
types of correlation functions in relation to the properties of the projection operators
as explained later.

The HDMR expansion may be understood in terms of 1 · f (x) = f (x), where 1
is the unit operator. We may represent 1 in many ways, such as in terms of tensor
products of orthogonal functions in each of the variables xi. The latter representations
of f (x) are complete, but they contain an infinite number of terms. The key to the
HDMR is the choice of 1 as a hierarchy of projections into subspaces of increasing
dimensions playing on the natural expectation of rapidly diminishing contributions
from the higher spaces corresponding to high-order correlations amongst the input
variables. An important property of HDMR expansions is that they will all converge
at the same order. If a choice of the measure µ for a function f gives a HDMR
that converges at order L with the error O(ε), then another HDMR defined by the
measure µ′ will also converge at order L with the error O(ε). However, the expansion
functions fi1...il(·), l 6 L, in each case will be different. In this sense, the correlation
interpretation of the function fi1...il(·) is associated with the measure used to define
their corresponding HDMR. The equivalence of one converged HDMR with respect
to any other may be exploited to calculate a convenient one and convert it to another
more suitable HDMR for a particular application (see figure 1 below).

The HDMR expansion (1) is used in statistics as the ANOVA (analysis of vari-
ance) decomposition [5,24] of a multivariate statistical quantity f (x1, . . . ,xn) which
depends on independently distributed random variables x1, . . . ,xn. Due to orthogo-
nality of the individual component functions, the variance of f will be equal to the
sum of variances of each of the individual random variables on the right hand side of
equation (1). Usually only the few lowest-order terms have significant contributions
to the overall variance of f . HDMR expansions can be used in a broader sense, as
the input variables need not be random and one may be interested in more than the
variance or some finite moment of the output. They may be used for representing the
input–output mapping over the operating region of the input variables. As such, they
are multivariate approximation/interpolation schemes as well as a means to analyze the
relevant statistics of a random output. The measure µ defined over the input variable
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space does not necessarily assume randomness of the input variables. It is rather a
“weight” chosen to give different HDMR expansions distinct characteristics that may
be useful for a particular representation problem. For example, the ANOVA-HDMR
in section 2.1 is useful for measuring the contribution of the variance of individual
component functions to the overall variance of the output. On the other hand, a cut-
HDMR expansion (section 2.2) is an exact representation of the output f (x) along
the hyperplanes passing through a reference point. Thus, the choice of the particular
HDMR is suggested by what is desired to be known about the output and is also
dictated by the amount and type of available data.

From equation (32) one may show that a compact formulation of the projection
operators is given by

Pi1...ilf (x) =

∫
Kn

Ki1...il(x;x′)f (x′) dx′,

K0(x;x′) =
n∏
j=1

gj
(
x′j
)
,

Ki1...il(x;x′) =
∏

j∈{i1,...,il}

[
δ
(
xj − x′j

)
− gj

(
x′j
)] ∏

k/∈{i1,...,il}

gk
(
x′k
)
. (40)

From the analysis above it is evident that the overall form of the HDMR expansion
is uniquely defined once the projection operators are specified. For illustration, we
present two classes of HDMRs with the projection operators specified below.

2.1. ANOVA-HDMR expansion

In this case, X is defined as the space of square-integrable functions on Kn. The
measure µ is taken as the ordinary Lebesgue measure

dµ(x) = dx = dx1 dx2 . . . dxn. (41)

With this choice, the actions of the projection operators in the ANOVA-HDMR are
given by

f0(x)≡P0f (x) =

∫
Kn

f (x) dx,

fi(xi)≡Pif (x) =

∫
Kn−1

f (x)
∏
j 6=i

dxj − P0f (x),

fij(xi,xj)≡Pijf (x) =

∫
Kn−2

f (x)
∏

k/∈{i,j}

dxk − Pif (x)− Pjf (x)− P0f (x),

...

fi1...il(xi1 , . . . ,xil)≡Pi1...ilf (x) =

∫
Kn−l

f (x)
∏

k/∈{i1,...,il}

dxk
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−
∑

j1<···<jl−1⊂{i1,i2,...,il}

Pj1...jl−1f (x)

−
∑

j1<···<jl−2⊂{i1,i2,...,il}

Pj1...jl−2f (x)− · · ·

−
∑
j

Pjf (x)− P0f (x), (42)

where the kernel functions are given by the expressions

K0(x;x′) = 1,

Ki1...il(x;x′) =
∏

j∈{i1,...,il}

[
δ
(
xj − x′j

)
− 1
]
, (43)

as a special case of equation (40). The expansion based on these integrals is a mul-
tivariate representation of the model output. It is mainly used [5,12,22,24,30] for
statistics purposes. If the input consists of independently distributed uniform random
variables (corresponding to the ordinary Lebesgue measure above), then the compo-
nent functions will be uncorrelated and the overall variance of the ANOVA-HDMR
can be written as follows:

D ≡ E(f − f0)2 =
∑
i

Di +
∑
i<j

Dij + · · ·+
∑

D12...n, (44)

where the individual variances Di1...il are given by

Di1...il =

∫
Kl

(fi1...il)
2 dxi1 . . . dxil . (45)

Global sensitivity indices based on these variances are defined as [12,22,30]

Si1...il =
Di1...il

D
, (46)

where Si1...il is the fractional contribution of the input set {xi1 , . . . ,xil} to the variance
of the output. Although an ANOVA-HDMR might be used as a multivariate repre-
sentation of the output, it is most useful as a sensitivity or uncertainty analysis of the
model output.

A significant drawback of employing ANOVA-HDMR is the need to compute
the above integrals to extract each component function for systems with high dimen-
sions n � 10. These high-dimensional integrals would likely need to be carried out
by Monte-Carlo integration, and a large number of sample points generally will be
required to attain good accuracy. The computation of the sensitivities Si1...il requires
the generation of N × (2n) uniformly distributed random numbers and the number of
model evaluations needed for Lth-order ANOVA-HDMR is given by

N ×
(

L∑
i=0

n!
(n− i)!i!

)
, (47)
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where N is the sample size for the computation of the each integral in the Lth-
order ANOVA-HDMR expansion. Even if L � n, the cost of such an analysis can
be very high as reliable results will often call for N � 103. To circumvent this
difficulty, a computationally more efficient cut-HDMR expansion will be introduced in
the following section for more general model representation and reexpression into the
ANOVA-HDMR form. Finally, although ANOVA-HDMR is often costly, if only the
total contribution of each variable xi to the variance is sought, then a simplification is
possible using Monte-Carlo sampling methods [12].

2.2. Cut-HDMR expansion

In this case, X is the space of functions on Kn taking finite value at the point
y = (y1, y2, . . . , yn). The measure µ is taken as the Dirac measure located at the point
y = (y1, y2, . . . , yn), i.e.,

dµ(x) =
n∏
i=1

δ(xi − yi) dxi. (48)

The point y will be called the “cut” center. Cut-HDMR is an expression of the function
f (x) as a superposition of its values on lines, planes and hyperplanes of higher orders
passing through the cut center y. The exploration of the output surface f (x) may be
global and the value of y is irrelevant if the expansion is taken out to convergence.

The component functions of f (x) obtained within cut-HDMR are given as fol-
lows. The notation f i1...il(xi1 , . . . ,xil) stands for the function f (x) with all the re-
maining variables, besides xi1 , . . . ,xil of the input vector set to y, e.g., f i(xi) stands
for f (y1, . . . , yi−1,xi, yi+1, . . . , yn):

f0 =P0f (x) = f (y),

fi(xi) =Pif (x) = f i(xi)− P0f (x),

fij(xi,xj) =Pijf (x) = f ij(xi,xj)− Pif (x)− Pjf (x)− P0f (x),
...

fi1...il(xi1 , . . . ,xil) =Pi1...ilf (x) = f i1...il(xi1 , . . . ,xil)

−
∑

{j1,...,jl−1}⊂{i1,...,il}

Pj1...jl−1f (x)

−
∑

{j1,...,jl−2}⊂{i1,...,il}

Pj1...jl−2f (x)− · · ·

−
∑
j

Pjf (x)− P0f (x), (49)
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with the kernel functions given by the expressions

K0(x;x′) =
n∏
j=1

δ
(
x′j − yj

)
,

Ki1...il(x;x′) =
∏

j∈{i1,...,il}

[
δ
(
xj − x′j

)
− δ
(
x′j − yj

)] ∏
k/∈{i1,...,il}

δ
(
x′k − yk

)
. (50)

The computational or experimental cost of generating the cut-HDMR up to the lth
level, when it is used for interpolation purposes, is given by

l∑
i=0

n!
(n− i)!i! (s− 1)i, (51)

where s is the number of sample points taken along each axis. If convergence of
the cut-HDMR expansion occurs at L � n, then the sum above is dominated by the
Lth term and, considering s � 1, we get full space resolution at the computational
labor of ∼(ns)L/L!. This result is in stark contrast with the conventional view of
exponential scaling ∼sn. Applications with well defined physical systems indicate
that one may expect L ∼ 1–3 for good quality results in many cases. The choice of
the cut center y is irrelevant if the cut-HDMR is taken out to acceptable convergence
at order L.

As an illustration the cut-HDMR was applied to a 0-D stratospheric chemical
kinetics model [26] for an air parcel at 45◦N latitude and 20 km altitude. The het-
erogeneous chemistry model was adapted from the NASA GSFC 2-D atmospheric
chemistry model [4,14] to run in 0-D. The model contained 39 chemical species and
106 reactions. The 39 outputs were the concentrations of the chemical species in-
volved and the total number of input variables was 46. These input variables consisted
of 39 chemical species, 5 parameters describing the photolysis rates, the number of
daylight hours, and temperature. The model is a set of 39 coupled ordinary differential
equations (ODEs) for the species. Denoting the concentration of the species at time n
by the vector x, the cut-HDMR learned the mapping f as

xn+1 = f (xn,αn), (52)

where the vector α denotes the 7 remaining inputs. A selected set of high-quality
simulations of the original model were carried out with a standard GEAR integra-
tor to create a cut-HDMR as discrete tables for all the significant expansion func-
tions for each of the 39 output species. The inputs were chosen on a special grid
so that they were suitable for learning the mapping by cut-HDMR expansion for
a step xn → xn+1 corresponding to 24 hours taking into account the orthogonal-
ity property in equation (10). During this period of 24 hours the parent ODE code
took up to ∼2000 time steps to achieve acceptable accuracy. The cut-HDMR ex-
pansion for each of the 39 outputs was carried out to second order which was found
to give good accuracy. Implementation of this second-order cut-HDMR involved the
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interpolation of functions of only one or two variables which is very easy to carry
out. We may denote the resulting mapping by f cut and replace the above dynamics
by

xn+1 = f cut(xn,αn). (53)

In order to test the accuracy of the mapping f cut in representing the actual mapping f ,
the evolution of the species was followed for one year by using (1) a GEAR inte-
grator with ∼2000 time steps per day, and (2) a HDMR integrator with a time step
of one day. The agreement between the HDMR integrator and the GEAR integrator
was very good. Both long- and short-time scale species were accurately calculated
with the worst case error being only ∼2%. The cut-HDMR in equation (53) was
then repeatedly applied out to 40 years with completely stable behavior. The in-
herent mass conserving property of the HDMR in equation (38) is central to this
behavior.

The computational savings with the HDMR integrator were determined by observ-
ing the execution time of 1000 simulations, each for one day in length, and comparing
the timings of the HDMR and GEAR integrators. The analysis was performed with
random initial conditions. The HDMR integrator showed dramatic computational sav-
ings of greater than ∼103 over the GEAR integrator. Such comparisons need to be
taken with caution, as tolerance issues also enter. However, attempts at accelerating
the GEAR solver by significantly reducing the tolerance resulted in unstable behavior,
and the advantage of HDMR remained. Further research needs to explore how HDMR
will behave for treating inherently unstable ODEs.

Several relationships exist between ANOVA-HDMR and cut-HDMR. The first of
these concerns the relation between the component functions of ANOVA-HDMR and
those of cut-HDMR given by

f anova
i1...il

(xi1 , . . . ,xil) =

∫
Kn

f cut
i1...il

(xi1 , . . . ,xil) dy, (54)

where the integrand is a cut-HDMR expansion function implicitly understood to depend
on y. Recall that f cut

i1...il
is exact along the hyperplanes through the cut center y. Thus

f anova
i1...il

is good on average throughout the subvolumes K l, l 6 n.
Computation of the ANOVA-HDMR expansion of f involves multi-dimensional

Monte-Carlo integrations of f which may be costly. If the objective is to compute
the ANOVA-HDMR component functions, then an efficient two-step approach can be
envisioned as follows (note that computation of cut-HDMR functions requires that the
function f (x) be sampled at special points, i.e., it can be computed if one has control
over the input variables):

(1) Compute the cut-HDMR component functions and approximate the function f (x)
by

f (x) ≈ f cut(x) = f cut
0 +

∑
i

f cut
i (xi) +

∑
i<j

f cut
ij (xi,xj) + · · · . (55)
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Figure 1. Two equivalent routes to the ANOVA-HDMR. The indirect route through the cut-HDMR is
generally more efficient.

(2) Compute the ANOVA-HDMR expansion of f cut(x). Assuming that an Lth-order
cut-HDMR approximates f (x) to good accuracy, then f cut(x) will consist of a
superposition of functions of at most L variables. When L � n, quadrature
techniques can be used for the integrations of the function f (x) to compute the
ANOVA-HDMR functions in a computationally accurate and efficient way.

A graphical representation of the above scheme is shown in figure 1.
If the cut-HDMR approximates f (x) to good accuracy at the Lth order, then the

computation route (2) + (3) in figure 1 will give a very close approximation to the
true f anova(x) and the computational effort required to construct the f anova(x) will be
much less. The computational cost of generating the Lth-order cut-HDMR is given
by equation (51). In contrast, the number of model evaluations for the Lth-order
ANOVA-HDMR is given by equation (47). Thus the ratio of the computational cost
of cut-HDMR to that of ANOVA-HDMR is given by

ρ ≡
∑L

i=0
n!

(n−i)!i!
(s−1)i

N∑L
i=0

n!
(n−i)!i!

. (56)

The condition (s− 1)L < N ensures that the ratio ρ is less than 1. Assuming that cut-
HDMR converges at low order (L ∼ 1–3), then the ratio will satisfy ρ� 1 observing
that typically s ∼ 10 and N � 103. Computation of ANOVA-HDMR using route (3)
in figure 1 after obtaining f cut(x) is straightforward involving integrals of dimensions
no larger than L. Since L is assumed to be small on physical grounds, the integrations
can be carried out very accurately via quadrature methods with only a few points,
while using Monte-Carlo integration directly in ANOVA-HDMR to the same accuracy
will call for a very large number of points N . In general, the savings arise as (1) calls
for integrations over f of dimensions n,n− 1, . . . ,n−L. In contrast, (2) calls for no
integrations and (3) only calls for integrations of dimensions 1, 2, . . . ,L and we expect
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that L � n. For n � 1, the integration by path (1) would need to be carried out by
costly statistical sampling (e.g., Monte-Carlo), while the integrals in step (3) of the
alternate route for a typical case of L 6 3 can accurately be performed by quadrature.
It is evident that the dimension of the integrals to compute via steps (2) and (3) is the
complement of those via step (1).

3. Functional HDMR

If the inputs to the physical system consist of a set of functions, then the physical
model output now becomes a functional. We assume that these functionals are defined
on the product space Cn[0, 1], where C[0, 1] denotes the space of continuous functions
on the unit interval. Thus an element x(t) ∈ Cn[0, 1] is a vector function of the form

x(t) =
(
x1(t),x2(t), . . . ,xn(t)

)
, xi(t) ∈ C[0, 1]. (57)

One approach to this functional mapping problem is to assume that a discretization of
the following form is valid:

xi(t) ≈
Ni∑
k=1

cikφk(t), (58)

where {φk(t)} is a family of orthogonal functions with either global or local support.
Then, any “functional” defined on Cn[0, 1] becomes a “function” of the parameters
cik and the function HDMR in section 2 can be used to learn the functional map-
ping. This approach has been successfully implemented for an atmospheric radiative
heating problem [27] where the input consisted of species and temperature profiles
as a function of altitude. If each xi(t) is a stochastic process, then the distribution
of the random variables cik would be specified from the distribution of input func-
tions. This discretization of the input functions can result in many variables which
under some conditions may be difficult to interpret physically. A different approach
may be taken to directly generate a functional analog of the HDMR expansion. We
defined the function HDMR expansions in terms of projection operators whose action
was expressed as integrals over the output model function. A direct generalization to
a functional HDMR expansion requires the definition of a functional integral on the
particular function space from which the output is drawn. In many respects, functional
HDMR has features analogous to function HDMR and the similarity will be exploited
in the development below.

A measure µ on the space Cn[0, 1] of vector functions x(t) ≡ [x1(t),x2(t), . . . ,
xn(t)] is completely specified by its definition on the sets of the form

Qt1t2...tk (B) =
{
x(·) ∈ Cn[0, 1]:

(
x(t1),x(t2), . . . ,x(tk)

)
∈ B ⊂ Rn×k

}
,

ti ∈ [0, 1], (59)

where B is a Borel subset of Rn×k. We also denote by L(Cn[0, 1]) the space of
functionals on Cn[0, 1] which are not necessarily linear. Having equipped the space
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Cn[0, 1] with the measure µ, we denote the integral of a functional F [·] on Cn[0, 1]
as
∫
F [x]Dµ(x).
Joint distributions of the subsets of the input vector x(t) are specified by measures

µi1...il(x) which are defined on sets of the form

Qi1i2...ilt1t2...tk
(B) =

{
xi1...il(·) ∈ C l[0, 1]:

(
xi1...il(t1), . . . ,xi1...il(tk)

)
∈ B ⊂ Rl×k

}
,

ti ∈ [0, 1], (60)

where we use the notation xi1...il(t) ≡ (xi1 (t),xi2(t), . . . ,xil(t)). In this case, inte-
grals of a functional F [·] with respect to the input vector xi1...il(t) are denoted by∫
F [x]Dµi1...il(x), where F is any functional defined on C[0, 1].

We assume that the inputs are independent of each other and the measure µ has
the following properties:

Dµ(x)≡Dµ(x1, . . . ,xn) =
n∏
i=1

Dµi(xi),
∫
C[0,1]

Dµi(xi) = 1. (61)

The inner product 〈·, ·〉 on L(Cn[0, 1]) induced by the measure µ is defined as follows:

〈F ,H〉 ≡
∫
F [x]H[x]Dµ(x), F [x],H[x] ∈ L

(
Cn[0, 1]

)
. (62)

Two functionals F [x] and H[x] will be called orthogonal if 〈F ,H〉 = 0. Note that
functionals F [x] and H[x] may have different sets of input functions. The norm ‖ · ‖
on L(Cn[0, 1]) induced by the above inner product is defined as follows:

‖F‖ ≡
(
〈F ,F 〉

)1/2 ≡
(∫

F 2[x]Dµ(x)

)1/2

. (63)

Given these relations, we define the following decomposition of L(Cn[0, 1]) and as-
sociated projection operators corresponding to each subspace:

Definition. V0, {Vi}, {Vij}, . . . ,V12...n ⊂ L(Cn[0, 1]) are defined as follows:

V0≡
{
F ∈ L

(
Cn[0, 1]

)
: F = C, where C ∈ R is a constant

}
,

Vi≡
{
F ∈ L

(
Cn[0, 1]

)
: F = Fi[xi] is a functional of only the input xi(t) with∫

C[0,1]
F Dµi(xi) = 0

}
,

Vij ≡
{
F ∈ L

(
Cn[0, 1]

)
: F = Fij[xi,xj] is a functional of only the inputs

xi(t) and xj(t) with
∫
C[0,1]

F Dµk(xk) = 0, k = i, j

}
,

...
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Vi1...il ≡
{
F ∈ L

(
Cn[0, 1]

)
: F = Fi1...il[xi1 , . . . ,xil] is a functional of only the

inputs xi1(t), . . . ,xil(t) with∫
C[0,1]

F Dµk(xk) = 0, k = i1, . . . , il 6 n
}

,

...

V12...n≡
{
F ∈ L

(
Cn[0, 1]

)
: F = F12...n[x1, . . . ,xn] with∫

C[0,1]
F Dµk(xk) = 0, k = 1, 2, . . . ,n

}
. (64)

The integral constraints in equation (64) are chosen to assure the orthogonality
of the functionals {Fi1...il}.

Lemma 1. The following proposition can be deduced immediately from the definition
above: L(Cn[0, 1]) is the direct sum of the subspaces defined above, i.e.,

L
(
Cn[0, 1]

)
= V0 ⊕

∑
i

Vi ⊕
∑
i<j

Vij ⊕ · · · ⊕
∑

i1<···<il

Vi1...il ⊕ · · · ⊕ V12...n, (65)

where ⊕ denotes the direct sum operator. The corollary to this proposition is that
F [x] ∈ L(Cn[0, 1]) can be written as

F [x] =F0 +
∑
i

Fi[xi] +
∑
i<j

Fij[xi,xj] + · · ·

+
∑

i1<···<il

Fi1...il[xi1 , . . . ,xil] + · · ·+ F12...n[x1,x2, . . . ,xn]. (66)

Decomposition (65) of L(Cn[0, 1]) is unique subject to the choice of measure µ, which,
in turn, implies that expansion (66) is unique. The proof is the same as in the function
HDMR case.

Lemma 2. Decomposition (65) suggests the following family of projection operators:

F0≡P0F (x) =

∫
Cn[0,1]

F [x]Dµ(x),

Fi[xi]≡PiF (x) =

∫
Cn−1[0,1]

F [x]Dµi(x)− P0F [x],

Fij[xi,xj]≡PijF (x) =

∫
Cn−2[0,1]

F [x]Dµij(x)−PiF [x]−PjF [x]−P0F [x],

...
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Fi1...il[xi1 . . . xil]≡Pi1...ilF [x] =

∫
Cn−l[0,1]

F [x]Dµi1i2...il(x)

−
∑

j1<···<jl−1⊂{i1,...,il}

Pj1...jl−1F [x]

−
∑

j1<···<jl−2⊂{i1,...,il}

Pj1...jl−2F [x]− · · ·

−
∑
j

PjF [x]− P0F [x]. (67)

These operators are chosen so that the variational problem

min
u

∥∥F (x)− u
∥∥, u ∈ V0 ⊕

∑
i

Vi ⊕
∑
i<j

Vij ⊕ · · · ⊕
∑

i1<···<il

Vi1...il (68)

is minimized with

u =

(
P0 +

∑
i

Pi +
∑
i<j

Pij + · · ·+
∑

i1<···<il⊂{1,2,...,n}

Pi1i2...il

)
F [x]. (69)

The proof of equation (69) is the same as in the function HDMR case.
The functional projection operators have the same properties as the function

HDMR projection operators. The first term in equation (66) above is the zeroth-order
functional HDMR approximation to the functional. The next set of terms containing
Fi[xi] gives the independent functional action of xi(t). The first two terms constitute
the first-order HDMR approximation, etc. The last functional F12...n[x1,x2, . . . ,xn]
gives any residual nth-order correlations amongst the functions upon the output. Each
of the integrals above can be computed by Monte-Carlo simulations given the distrib-
ution µ.

For the ease of illustration, throughout the rest of the discussion, we will assume
that the input functions to the system are independent Wiener processes on time seg-
ment [0, 1]. A Wiener, or Brownian motion, process is a random Gaussian process
with zero mean and correlation function R(t, s) = min(t, s), which is a model of a
suitable physical phenomenon, i.e., the Brownian motion. An n-dimensional Wiener
process is defined as a vector process

W ≡
[
W1(t),W2(t), . . . ,Wn(t)

]
, (70)

where the one-dimensional processes {Wi(t)}t>0 are independent Wiener processes.
Let F [W ] denote some functional of the vector process W = [W1(t),W2(t),

. . . ,Wn(t)] and let µ denote the Wiener measure defined on the product space
C = Cn[0, 1]. By

∫
C F [W ]Dµ(W ) we denote the integral of the functional F [W ]

with respect to the Wiener measure µ (see the appendix).
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As an illustration consider the first-order functional HDMR approximation to the
following functional:

F
[
W1(t),W2(t)

]
=

∫ 1

0
W 2

1 (t) dt+ α

[ ∫ 1

0
W1(t)W2(t) dt

]2

+

∫ 1

0
W 4

2 (t) dt. (71)

Employing the material in the appendix, we get the following component functions:

F0 =
13
12

+
α

6
,

F1
[
W1(t)

]
=

∫ 1

0
W 2

1 (t) dt+ 2α
∫ 1

0

∫ t

0
sW1(t)W1(s) dt ds +

7
12
− F0,

F2
[
W2(t)

]
=

∫ 1

0
W 4

2 (t) dt+ 2α
∫ 1

0

∫ t

0
sW2(t)W2(s) dt ds +

1
2
− F0. (72)

Various values of the constant α will be used to understand the effect of the interaction
term. Functional HDMR was applied to the above model at first order. Since the above
functionals represent a random variable, the statistics of the following error measure
represent the goodness of the functional HDMR approximation:

ε ≡
{∣∣∣∣F − FHDMR

F

∣∣∣∣}, (73)

where FHDMR = F0 + F1[W1(t)] + F2[W2(t)]. The error ε is considered a vector of
length 1000 corresponding to the number of runs with random input functions W1(t)
and W2(t). The criterion in (73) can be misleading at the points where the model
output is close to zero; we observed large outliers in the 1000-sample Monte-Carlo
runs. The frequency of these large values is recorded and the following redefined error
vector ε̂ is employed:

ε̂ ≡ {εi: εi < 1} (74)

along with an observation of its length L[ε̂ ]. The length of the vector is a measure
of the domain where the relative error is smaller than one. Table 1 lists α and the
associated mean (M), standard deviation (SD) about the mean of the above vector ε̂,
and the length of ε̂. The accuracy of the first-order HDMR approximation decreases
as the coefficient α increases consistent with the contribution of the interaction term
to the overall functional.

Table 1
Accuracy of the first-order functional HDMR.

α = 0.5 α = 1.0 α = 5.0

M[ε̂] 0.1087 0.1686 0.3032
SD[ε̂] 0.1538 0.1986 0.2458
L[ε̂] 988 943 745
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3.1. Functional cut-HDMR

The computation of the integrals in equation (67) is expensive. Instead of av-
eraging, a single run of the multi-dimensional vector x = (x1(t),x2(t), . . . ,xn(t)) can
be used to formulate a functional cut-HDMR expansion which is an analog of the
cut-HDMR expansion presented in section 2.2. Let y ≡ [y1(t), y2(t), . . . , yn(t)] be
the reference function vector used for expansion. The choice of y typically would be
made on physical grounds as a rational reference for the system, although this choice
is irrelevant when the HDMR is taken out to a practical level of convergence. Be-
fore considering the projection operators for the cut-functional HDMR, we fix some
notation. F i1i2...il[xi1 , . . . ,xil] stands for the functional F [x] with all the remaining
input functions set to reference vector function y, e.g., F i[xi] stands for the expression
F [y1(t), . . . , yi−1(t),xi(t), yi+1(t), . . . , yn(t)].

The projection operators associated with functional cut-HDMR take the following
form:

F0 =P0F [x] = F [y],

Fi[xi] =PiF [x] = F i[xi]− P0F [x],

Fij[xi,xj] =PijF [x] = F ij[xi,xj]− PiF (x)− PjF [x]− P0F [x],

...

Fi1...il[xi1 , . . . ,xil] =Pi1...ilF [x] = F i1...il[xi1 , . . . ,xil]

−
∑

j1<j2<···<jl−1⊂{i1,i2,...,il}

Pj1j2...jl−1F [x]

−
∑

j1<j2<···<jl−2⊂{i1,i2,...,il}

Pj1j2...jl−2F [x]− · · ·

−
∑
j

PjF [x]− P0F [x]. (75)

The relationship summarized by figure 1 is valid between general functional HDMR
and the special case of functional cut-HDMR, i.e., the functional cut-HDMR can be
used to compute other functional HDMR expansions of the functional F [x].

As an illustration, we give the following example:

F
[
W1(t),W2(t),W3(t)

]
= exp

[ ∫ 1

0

(
W1(t)

)2
dt+ α

∫ 1

0
W2(t)W3(t) dt

]
. (76)

The coefficient α weighs the importance of the interaction term. This functional is
highly nonlinear due to the exponential behavior. The same error criterion in equa-
tion (73) is also employed in table 2. As expected, the accuracy of the first-order
functional cut-HDMR diminishes as the value of α increases.
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Table 2
Accuracy of the first-order functional cut-HDMR.

α = 0.1 α = 0.5 α = 1.0

M[ε̂] 0.0414 0.1668 0.3097
SD[ε̂] 0.0445 0.1712 0.2548
L[ε̂] 1000 995 903

4. Applications of HDMR

The HDMR technique is a tool to enhance modeling or an experimental effort
where the interest centers on the input–output relationships. There is a broad family
of applications to exploit the HDMR capabilities. Presently, applications have been
made to chemical kinetics [26], radiative transport [27], materials discovery [21,25]
and statistical analysis [22,30]. Some of the applications discussed below go beyond
those currently available. The particular applications of HDMR discussed below are
not exhaustive and they should be regarded as representative.

4.1. Fully equivalent operational models

All the HDMR applications in sections 4.2–4.7 are associated with exploring
the role and relationships amongst the model variables. An application of HDMR, to
some degree underlying the ability to execute the other applications in sections 4.2–4.7,
is model component replacement by highly efficient equivalent forms. This operation
takes advantage of the fact that complex models are typically broken into various com-
ponents (e.g., involving chemistry, mechanical coupling, mass transport, etc.). These
components of an overall model are often treated by numerical splitting techniques, thus
isolating them for efficient replacement with equivalent HDMRs. Some components
(e.g., radiation transport in weather modeling) can be exceedingly costly contributions
to the computational effort as they correspond to high overhead operations which are
repeated many times in the course of model execution. In some applications, the
model “component” may be the entire model. The input–output space can be of high
dimension n, but typically it is expected to have systematic structure. Thus, one could
envision “learning” the model input–output behavior through the observation of model
runs for subsequent encapsulation of the information into an HDMR expansion. Once
the expansion functions f0, fi, fij , etc. are learned, they may be reused as a basis
to predict output behavior at any other point x in the space called upon in additional
execution of the model. The HDMR expansion obtained in this way corresponds to a
fully equivalent operational model (FEOM) which could replace the original one (i.e.,
the model component(s)). The logic will be most appropriate for model components
that involve very large numbers of computational operations which are repeated many
times in executing the overall model. The computational savings using a FEOM can
be dramatic. A study on atmospheric radiation transport treating water vapor, and
temperature as input column functions led to a computational saving by a factor of
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∼103 for the atmospheric heating rate with errors no larger than a few percent at all
altitudes [26]. In an additional study discussed in section 2.2, a FEOM acted as an
integrator of a set of coupled ordinary differential equations describing atmospheric
chemical kinetics. In this case, the FEOM variables (x1,x2, . . . ,xN ) consisted of
the initial conditions for the system of equations and the outputs were the species at
24 hours later. High-quality results were produced over an interval of many years by
repeated use of the FEOM from one day to the next at computational savings of ∼104

over the original GEAR code while maintaining very good accuracy. In general, the
method may be applied to an autonomous set of differential equations of the form

ẋ= h(x), x(t0) = x0. (77)

After an appropriate discretization over the vector of input variables x0, the dynamics
of above system can be approximated by a discrete map of the form

xm+1 =H(xm), m = 0, 1, 2, . . . , (78)

or, equivalently,

xm =Hm(x0), m = 1, 2, . . . , (79)

where m indicates the time discretization. Importantly, the map can be discretized on
steps much larger than traditional integrator time-steps (cf. the 24-hour HDMR steps
mentioned above, while the GEAR integration took ∼2000 steps over one day). The
map H can be approximated by a cut-HDMR representation and it can be repeatedly
used as an integrator of the dynamical system. The behavior of the HDMR approxi-
mation to the discrete map when the system exhibits chaotic or possibly other types
of unstable behavior is an open question.

The use of FEOMs has potentially broad applicability in many areas and, impor-
tantly, the FEOM replacement of a model component (e.g., radiation transport) can be
handled as a simple swap for an existing routine without alteration of the remainder of
the code. The original model component would likely still be retained, but only called
upon if a new required input point x fell outside of the regime explored in generating
the FEOM or if the FEOM prediction is estimated to have significant errors. In this
case, the output from the new model component run would also serve to enhance the
FEOM for its further use. Following this logic, the creation of a FEOM for model com-
ponent replacement could be performed as a background operation, while the parent
code is being exercised in a normal fashion. The latter approach would correspond to
generating a FEOM from a space of variables x chosen with a probability distribution
dictated by the physical model.

4.2. Identification of key variables and their interrelationships

The terms in the HDMR expansion can be regarded as the generalized sensitivi-
ties of the output function f (x1,x2, . . . ,xn) with respect to groups of variables. Each
of the functions fi(xi), fij(xi,xj), . . . reveals a unique contribution of the variables
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separately or cooperatively to influence the output f . These comments apply to any
of the HDMR expansions and the choice of the expansion can give different physical
interpretation and quantitative measures of the variable cooperativity. The choice of
HDMR expansion to employ will often be guided by physical considerations. For
example, if a clear reference state y exists, then the cut-HDMR is natural for variable
analysis in relation to y. If statistical variance analysis is needed, then ANOVA-
HDMR is appropriate [22,30] as discussed in section 4.3. An example in a study of
atmospheric radiation transport [27] involved a functional cut-HDMR expansion of the
output atmospheric heating rate with respect to the input column densities of chemical
species. Discretization of the functions led to 62 input variables, but the HDMR ex-
pansions revealed that many variables were important acting independently and only
a modest number of pair correlated contributions existed. Techniques from traditional
gradient-based sensitivity analysis can reveal similar relationships [1,2,19,20], but only
over small operating uncertainty or scenario variations around a nominal set of condi-
tions. In contrast, the HDMR expansion puts no restrictions on the magnitude, shape
or variable range of the individual expansion functions, to reveal the true underlying
variable relationships.

4.3. Global uncertainty assessments

Expressing the output uncertainty in terms of model input uncertainty has been a
topic of prime interest in virtually all areas of modeling. Monte-Carlo sampling [28]
and perturbative sensitivity analysis [19,20] are the traditional approaches to these
problems. In both cases, a probability measure is defined on Rn and the goal is to
calculate the mean f̄ = Ef and standard deviation σf = E(f − f̄ )2 of the output f , as
well as to reveal the contributions from the various input variables and their interrela-
tionships. One may show that the ANOVA-HDMR expansion has a direct statistical
correlation interpretation [22,30]. Each term of the expansion is associated with a
particular contribution to the variance of the output. Orthogonality of the individual
terms ensures this behavior. The overall variance σf can be written as follows:

σf =
∑
i

σi +
∑
i<j

σij + · · · ,

σi =

∫
f 2
i (xi) dµ(xi),

σij =

∫
f 2
ij dµi(xi) dµj(xj),

... (80)

Monte-Carlo integration [28] would be a means for evaluating above integrals. Another
approach would be to use the alternate route in figure 1 which is computationally less
expensive. Illustrations of these uncertainty analyses have been made for applications
to environmental modeling [22]. The information gained from the decomposition of
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the variance σf into its subcomponents σi, σij , etc. can be most valuable for attaining
a physical understanding of the origins of uncertainty.

4.4. Quantitative risk assessment

Environmental, industrial, and economic modeling often are performed for the
ultimate purpose of providing an assessment of the risk associated with some action
that is subject to remediation. There is a serious need for more quantitative and ef-
ficient means of performing these assessments. For a quantitative risk assessment, it
is generally necessary to split the original set of input variables into two components
(x1, . . . ,xs; y1, . . . , yr; r+ s = N ), where the set {xi} will be referred to as scenario
variables under human control (e.g., industrial emissions, etc.) and the set {yj} will
correspond to all other model variables (e.g., chemical rates, transport coefficients, me-
chanical properties, etc.) which are present and subject to some degree of uncertainty.
Typically, risk is associated with identifying whether the output exceeds (or goes be-
low) a critical value f > fc. The risk R is defined as the probability P (f > fc) for
this event to occur while simultaneously taking into account the uncertainty amongst
the model variables {yj}. Thus the risk is defined as

R =

∫
dµ(x) dν(y)H

[
f (x; y)− fc

]
, (81)

and the variance of the risk is

σR = −R2 +

∫
dν(y) dµ(x) dµ(x′)H

[
f (x; y)− fc

]
H
[
f (x′; y)− fc

]
, (82)

where the distribution of the variable group y is given by ν and H(z) is the Heaviside
function. We may take special advantage of the HDMR expansion in evaluating the risk
and the variance around the risk in a quantitative fashion. These tasks are facilitated
by the ability to rapidly evaluate f (x; y). In addition, it will be possible to determine
the portion of the scenario variables (x1, . . . ,xr) which contribute independently or
in a correlated fashion to the risk (cf. section 4.2 above). The analysis will not only
provide the risk R, but also a quality assurance on the risk through its variance σR
due to the model variables {yj} and their uncertainty.

4.5. Inverse problems

Information on the input variables of an input–output relationship is often in-
complete. If the objective is to gain knowledge about these unknown input variables
from the available output data, the task becomes an inverse problem. This problem is
typically ill-posed [34] in the sense that there are usually more unknowns than avail-
able measurements. In addition, measurements (i.e., function(al)s of the outputs) will
inevitably contain errors and this further contaminates the quality of the quantity to be
extracted. These issues are typically dealt with through regularization based on a local
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linear sensitivity analysis mapping between the data-model deviations and the sought-
after input variables [11,34]. The linearization is an approximation to the true model
and can lead to algorithmic instabilities and even a false solution. For inversion appli-
cations, the HDMR expansion needs to be extended to consider the case of multiple
outputs f l(x1,x2, . . . ,xn) labeled by the index l = 1, 2, . . . . This index corresponds
to distinct observations (e.g., chemical species as well as their spatial locations and/or
temporal behavior). The forward problem consists of expressing f 1, f 2, . . . in terms
of the input x1,x2, . . . ,xn. The inverse problem is to map the data back to identify
the input variables. By reversing the roles of the f ’s and x’s, one can construct an
inverse-HDMR expansion for x’s in terms of f ’s. A regularization functional also can
be introduced if there is a priori knowledge of the input variables to be inverted. An
open question is how to express the HDMR expansion of the inverse map in terms
of the HDMR expansion of the forward map and analyze the relation between the
convergence behaviors of the two expansions.

4.6. Financial and econometrics applications

For many financial applications, one wishes to relate (regress) a response yt to
several variables x1t, . . . ,xl t (t signifies the time component of the financial or econo-
metrics data). Parametric regression models take the form yt = f (Θ;x1t, . . . ,xl t),
where the form of the function f is known and the parameter set Θ is to be estimated
by satisfying some optimization criteria. Nonparametric regression of yt takes the
form yt = f (x1t, . . . ,xl t) with an unknown function f . Modelling with nonlinear non-
parametric regression is normally viewed as computationally very intensive due to the
curse of dimensionality mentioned before. Sampling the input space is of exponential
cost in the number of input variables. Various learning algorithms have been devised
to model the output to good accuracy while being computationally cheaper than a full
sampling of the space. Nonparametric regressive schemes include average derivative
estimators [31], artificial neural networks [35], radial basis function interpolators [18]
and projection pursuit regression [7]. A disadvantage of these nonlinear models is that
there is no widely accepted procedure for choosing a specific model over another.
A priori knowledge of the system to be modeled is crucial to the success of the model.
HDMR is a nonparametric nonregressive model and as such it has advantages for di-
rect applications to problems in finance and time series econometrics. One possible
application is the modelling of the price of financial securities which are dependent
on several factors, i.e., parameters of the stochastic differential equation governing the
evolution of the price, interest rate, time to maturity of the security and other factors
specific to the pay-off structure of the particular security.

4.7. Laboratory applications of HDMR

In many cases, the performance of laboratory or field experiments is done for the
explicit purpose of exploring broad regions of the input variable space. Applications of
this type abound in many areas including industrial processes, environmental studies,



H. Rabitz, Ö.F. Alış / High-dimensional model representations 227

materials design, engineering control, etc. The most challenging and interesting of
these problems arises when the dimension n of the space of inputs is large. This
task may be recognized as the learning of the output mapping f : Ω → R, where
Ω is the space of input values. Traditional statistical sampling techniques, including
factorial design, are inadequate as they provide no guidance based on the system
behavior. In this case, the notion of the “model” in the HDMR sense is understood
to mean the realization of laboratory or field experiments and representing them in a
logical fashion to provide an efficient and thorough sampling for analysis of the results.
Given the above objective the HDMR expansion provides an ideal approach. When
the HDMR expansion converges at low orders, the original NP-complete problem
is reduced to one of polynomial scaling in the dimension of the input space. As
experiments can be exceedingly expensive to perform, this savings can be critical. One
particular application of the cut-HDMR has been made for semiconductor electronic
band gap as the observable material property with the input variables being the material
compositions. It was shown that the band gap of the material GaαIn1−αPβAs1−β
could be reliably described as a function of α and β by a first-order cut-HDMR
centered at α = 0, β = 0 corresponding to laboratory band gap input variables for
the materials GaαIn1−αAs and InPβAs1−β . In this case, n = 2, and this is a modestly
“high-dimensional” semiconductor system. Although each application will have its
own features, the domain of combinatorial synthesis poses an intriguing opportunity,
as in most realistic cases one has n � 1 and there very likely will be correlated
behavior amongst the input materials or chemical variables. One could envision active
feedback between the ongoing experiments and the development of an HDMR to guide
the subsequent experiments to rapidly converge on the desired library of materials or
compounds for application purposes [21].

5. Conclusion

In this paper, we introduced a family of nonparametric multivariate approxima-
tion/interpolation schemes for physically based function(al)s with a large number of in-
put variables. A specific form of the high-dimensional model representations (HDMR)
reveals the correlations among the input variables as reflected upon the model output
and the nature of the metric in the variable space. Each component function in an
HDMR gives the specific contribution of an input or a set of inputs to the output. The
HDMRs are useful if they can represent the output to good accuracy at sufficiently
low orders. As argued in the text, for most well-defined physical systems, high-order
correlated behavior of the input variables is expected to be weak and HDMRs are
designed to capture this effect. It is interesting that the greatest body of evidence sup-
porting this statement comes from the multivariate statistical analysis of many systems
where rarely more than covariances are needed to capture the physical behavior.

General HDMR expansions are similar in form to the ANOVA expansion used
in statistics to analyze the variance of a physical quantity. HDMR is a hierarchical
description of the multivariate function f (x) as a sum of component functions of



228 H. Rabitz, Ö.F. Alış / High-dimensional model representations

fewer variables. HDMR does not assume an a priori parametric form and as such
it is not a fitting algorithm like other regressive multivariate approximation schemes.
As shown in section 2, the HDMR functions are optimal with respect to a suitably
defined norm with the optimality criterion being a quadratic cost functional. However,
the HDMR avoids an explicit optimization (fitting) procedure to represent the output
function f (x). For example, the cut-HDMR approach only calls for evaluation of the
output on “specified” lines, planes and hyperplanes of higher dimensions to construct
expansion (1).

The high computational or experimental effort for representing multivariate func-
tions was one of the motivations of the present work. Without a priori information on
the nature of the output, multivariate function approximations suffer from the curse
of dimensionality. Sampling in the n-dimensional space scales exponentially with the
dimension n. The number of samples needed to achieve a given degree of accuracy
depends on the dimension of the input vector and the smoothness of the function to be
approximated. Without any regularization of the output function, one needs sn sample
points to approximate/interpolate the function to a resolution of 1/s. Therefore, for
physical systems with many input variables, a blind reconstruction of the output func-
tion f (x) from its sample values is virtually impossible. In this respect, one should
consider the storage and computational limitations in constructing f (x). If the time
required to obtain a single value of the output is sufficiently fast, representation of the
multivariate output may not be difficult. However, when this time is of the order of
minutes or larger for a computational model, then representation of the output in high
dimensions becomes impossible unless some regularization on the output is imposed.
The regularization implicity imposed by HDMR is that the high-order correlated effects
of the inputs upon the output are negligible for well-posed physical systems. Similar
comments apply for representing the input–output behavior of experimental systems
where the curse of dimensionality can be even more critical.

A number of multivariate approximation schemes exist to circumvent this curse
of dimensionality. They are inspired by a theorem of Kolmogorov, which states that
any multivariate function can be written as a superposition of functions of a suit-
able set of variables. In the introduction we mentioned three of these approximation
schemes collectively known as learning networks. Each of these schemes can be pre-
ferred over another for a specific problem, however, there are no general rules that
determine which one is suitable for a specific problem. The HDMR expansions are
based on a general ansatz that for physical systems the order of cooperativity amongst
the input variables upon the output does not significantly increase as the number of
inputs goes up. Consistent with this ansatz, it has been observed in cases of diverse
physical phenomena that the first few lowest-order interaction terms are often enough
to approximate the output to good accuracy. The computational advantage gained by
HDMR (when it converges at low order) is significant. Assuming that a second-order
HDMR is an accurate representation of the output, the computational complexity scales
quadratically with the number of input variables. Although a thorough analysis of the
convergence behavior of HDMR expansion is not given in this paper, numerical tests
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on a number of systems suggest that low-order terms will represent the output to good
accuracy. The systems include chemical kinetics modelling [26], radiative transport
modelling [27], solid-state material modelling and experiments [21,25], as well as
testing on various simple mathematically defined tasks addressed in the text. We em-
phasize that HDMR is designed to deal with well-defined physical systems where the
input variables are rationally chosen to have a nominally specific action or a role. The
latter circumstance is natural in setting up physical systems, but no such guidance ex-
ists for arbitrary mathematical functions, notwithstanding the theorem by Kolmogorov.
These comments are important to keep in mind when exploiting HDMRs.

Section 2 introduced the general formulation of HDMR and presented two par-
ticular HDMR expansions. The ANOVA-HDMR useful in statistics called for the
computation of multi-dimensional integrals which is quite prohibitive in high dimen-
sions at good accuracy. Although Monte-Carlo integration is viable in high dimensions,
one still needs a large number of sample values to carry out the necessary integrations
to good acuuracy. The cut-HDMR expansion does not necessitate the computation
of any multi-dimensional integrals. It uses the sample values of the output on lines,
planes and hyperplanes of higher dimensions passing through a reference point and
constructs the function from these values according to equation (49). A very important
result connecting the ANOVA-HDMR and cut-HDMR is that the ANOVA-HDMR ap-
proximation f anova(x) of the function f (x) can be obtained in a much more efficient
manner from f cut(x) taken to convergence. In this case, the ANOVA-HDMR of f cut(x)
is a good approximation to f anova(x), and computing f → f cut → f anova is often ex-
pected to be much less intensive for the same degree of accuracy compared to that
of f → f anova, since the dimension of the integrals to be computed is smaller. Given
the low dimension of the integrals, accurate quadrature techniques could be very ef-
ficient. In this case, the sampling of the cut-HDMR subspaces could be performed
at the particular quadrature points. A graphical illustration of this method is given in
figure 1.

New HDMR expansions with distinct character can be generated by changing the
measure µ in formulae (16). The measure µ in this respect acts as a “weight” to give
more importance to certain regions of the input space. Coordinate transformations
of the original input variables also generate new HDMR expansions. Kolmogorov’s
theorem implies that there is a coordinate system in which the HDMR expansion is
exact at first order. However, an a priori analysis of the output data must be performed
first to learn which coordinate system is the best one. This task is as difficult as learning
the output function and as an initial approximation one can search for optimal linear
coordinate transformations which is the basis for the projection pursuit regression
technique.

Section 3 extended the HDMR expansion to represent physical systems where
inputs reside in an infinite-dimensional space, and thus the output becomes a functional.
If a discretization of the input space is possible this functional becomes a function of
the discretization coefficients, thus rendering a function HDMR expansion possible.
However, a direct functional analog of HDMR can be expressed in terms of functional
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integrals of the output functional. The interpretation of the component functionals is
the same as in the function HDMR case. Monte-Carlo simulations may be used to
compute the associated multi-dimensional functional integrals. Computations of these
integrals are very costly and an additional complication is that the underlying measure
on the input space may not be known. A functional cut-HDMR avoids computation
of the integrals and uses a reference point in the input function space to construct an
HDMR expansion based on the expressions in equation (75). Simple examples were
given to illustrate the functional HDMR and functional cut-HDMR.

As a multivariate approximation/interpolation scheme, HDMR has a broad variety
of applications. It can also be used in assessing the importance of the individual and
cooperative effects of the input variables. Selected applications are mentioned in
section 4. This list is not exhaustive and should be regarded as representative. The
relative ease of employing HDMRs should aid in their various future applications.

Appendix

This appendix gives a brief primer on functional integration [6,29] and how
to compute functional integrals by Monte-Carlo simulations. Functional HDMR is
expressed in terms of integrals of output functionals with respect to a measure defined
on the space of input functions. It is necessary to have a measure defined on the space
of inputs to carry out the integration. For ease of understanding, the terminology of
stochastic integration [16] will be used. The only difference with the general case is
that the underlying measure is a probability measure. A stochastic process {Xt}t∈T is
an indexed family of “random variables” defined on a probability space (Ω,F , P) with
Ω an abstract space, F a σ-algebra defined on Ω and P a probability measure defined
on F . The parameter space T is the unit interval [0, 1]. Note that, for each t ∈ T
fixed, one has a random variable (a measurable function in the general case). On the
other hand, fixing ω ∈ Ω one can consider the function t → Xt(ω), t ∈ T , which is
called a path of Xt. One can identify each ω with the function t → Xt(ω) from T
into Rn. Thus, we can regard Ω as a subset of the space Ω = (Rn)T of all functions
from T into Rn. Then the σ-algebra F will contain the σ-algebra B generated by the
sets of the form{

ω: ω(t1) ∈ F1, ω(t2) ∈ F2, . . . , ω(tk) ∈ Fk
}

, Fi ⊂ Rn Borel sets. (83)

Therefore, a stochastic process may be viewed as a probability measure P on the
measurable space ((Rn)T ,B).

The finite-dimensional distributions of the process X ≡ {Xt}t∈T are the measures
µt1,t2,...,tk defined on Rnk, k = 1, 2, . . . , by

µt1,t2,...,tk(F1 × F2 × · · · × Fk) = P[Xt1 ∈ F1, Xt2 ∈ F2, . . . , Xtk ∈ Fk],

ti ∈ T , (84)

where Fi are Borel sets in Rn. The family of finite distributions specifies the process X.
Two stochastic process Xt and Yt are modifications of each other if P[ω: Xt(ω) =
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Yt(ω)] = 1 for all t ∈ T . Kolmogorov’s continuity theorem states that, if the stochastic
process X satisfies the condition

E
[
|Xt −Xs|α

]
6 C|t− s|1+β , 0 6 s, t 6 T , (85)

for some positive constants α, β, C, then there exists a continuous modification of X.
From here we deal with processes which have continuous modifications.

X is said to be a Gaussian process if the vector (Xt1 ,Xt2 , . . . ,Xtk ) is Gaussian
for every choice of the integer n > 1 and times t1, t2, . . . , tk. A Wiener process
{Wt}t∈T is a continuous Gaussian process with mean zero and covariance function

Cov(Ws,Wt) ≡ E[WsWt] = min(s, t). (86)

An m-dimensional Wiener process is defined as a vector process

W ≡
[
W1(t),W2(t), . . . ,Wm(t)

]
, (87)

where one-dimensional processes {Wi(t)}t>0 are independent one-dimensional Wiener
processes. The Wiener measure µW generated by the Wiener process has the following
finite-dimensional distributions. Fix x ∈ Rn and define

p(t,x)≡ (2πt)−n/2 e−|x−y|
2/(2t), t ∈ T ,

µWt1,t2,...,tk(F1 × F2 × · · · × Fk)≡
∫
F1×···×Fk

p(t1,x,x1)p(t2 − t1,x1,x2)× · · ·

× p(tk − tk−1,xk−1,xk) dx1 . . . dxk. (88)

If an integrable functional F [W ] is given, the Wiener integral is defined by∫
C
F [W ]µW (dW ) ≡ EFW , (89)

where C = Cm[0, 1] and the expectation is taken with respect to measure µW . For the
class of functionals F [W ] = ||W ||2k =

∫ 1
0 W

2k(t) dt, the exact values of the integrals
ck = EFW are given by the following recursive formulae:

c0 = 1, ck = 2k
dk

dλk
{cosλ}−1/2|λ=0. (90)

The first few are

c1 =
1
2

, c2 =
7

12
, c3 =

139
120

, c4 =
5473
1680

. (91)

The Monte-Carlo method of approximating integrable functionals is given in its sim-
plest form by the formula∫

C
F [W ]µW (dW ) ≡ EF [W ] ≈ 1

N

N∑
k=1

F
[
W (k)], (92)
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where W (k) are independent realizations of the m-dimensional Wiener process. As N
grows, the quantity (1/N )

∑N
k=1 F [W (k)] converges in probability to the functional

integral of FW with respect to the m-fold Wiener measure on the function space
C[0, 1]m. The computation scheme above can also be used for the evaluation of
functional integrals where the input functions are non-random. Then the convergence
is in the ordinary sense, rather than a probabilistic one.

One approximate realization of a one-dimensional Wiener process is based on the
substitution of the trajectories by polygonal lines. First, partition the segment [0, 1]
into n parts by the points 0 = t0 < t1 < · · · < tn = 1. By the definition of the Wiener
process, the random values W (ti), i = 1, 2, . . . ,n, of the Brownian trajectory may
be consecutively found from a known value W (ti−1) (W (0) = 0) as the conditional
normal distribution with parameters m = W (ti−1) and σ2 = ti − ti−1. Equivalently,
the values W (ti) may be specified by the formula

W (ti) = W (ti−1) +
√
ti − ti−1ζi (i = 1, 2, . . . ,n), (93)

where ζi are independent normal random values with parameters m = 0, σ2 = 1.
Thus, the realization xk(t), k = 1, . . . ,N , of Brownian motion W (t) is by polygonal
lines

W (t) = W (ti−1) +
W (ti)−W (ti−1)

ti − ti−1
(t− ti−1)

(
t ∈ [ti−1, ti]

)
(94)

or, in a slightly different form,

W (t) = W (ti−1) +
t− ti−1√
ti − ti−1

ζi
(
t ∈ [ti−1, ti]

)
,

W (0) = 0, i = 1, 2, . . . ,n,

which may be constructed by modeling the above-mentioned random quantities ζi.
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